В треугольнике ABC ∠A=54∘, ∠B=66∘, отрезок AK - высота треугольника. Найдите радиус окружности, описанной около треугольника ABK, если радиус окружности, описанной около треугольника ABC, равен 6. Надо выбрать правильный ответ: 6√3 3√3 2√3 12√3
3*spq(3).Вписанный угол С=60 из треуг. САК,тк ВАК=24, Аа САК=30. Значит центральный угол АОВ=60*2=120.Из РАВНОБЕДРЕННОГО треуг. АОВ; АВ=6*корень (3).Но АВ-гипотенуза треуг.АВК, ЗНАЧИТ радиус получаем делением на 2.