Дан четырёхугольник ABCD.Определите,что больше:периметр четырёхугольника или сумма длин его диагоналей.В четырехугольнике АВСD точка О - точка пересечения диагоналей AC и BD По теореме о неравенстве треугольника имеем:В треугольнике ABC: AC < AB + BC (1)В треугольнике ADC: AC < DA + DC (2).В треугольнике BAD: BD < AB + AD (3).В треугольнике BCD: BD < CB + CD (4). Сложим (1), (2), (3) и (4): 2(AC + BD) < 2(AB + BC + CD + AD) или(AC + BD) < (AB + BC + CD + AD) .Ответ: сумма диагоналей четырехугольника МЕНЬШЕ его периметра.