Даны точки A, B , C в прямоугольной системе координат. Найдите координаты точки C, если она принадлежит медиатриссе отрезка AB, где А(2,3), B(2, -2), имеет положительную ординату и расположена на расстоянии 5 единиц от отрезка AB
Серединный перпендикуляр (срединный перпендикуляр или медиатриса) — прямая, перпендикулярная к данному отрезку и проходящая через его середину. Так как АВ имеет одинаковые координаты по х, то точка С, расположенная на расстоянии 5 единиц от отрезка AB, имеет х = 2+5 = 7. По у середина равна (3+(-2))/2 = 0,5. Ответ: С(7; 0,5).
Если верно задание:"имеет положительную ОРДИНАТУ", то имеется ещё одна точка С: х = 2-5 = -3. Ответ (2): С(-3; 0,5).