Каждое число от 1 до 999 с нечетной суммой цифр имеет один из следующих четырех видов: 2k+1, 2k+10, 2k+100, 2k+111, где k=100a+10b+c и а,b,c∈{0,1,2,3,4}, причем любая такая упорядоченная тройка (a,b,c) однозначно задает k. Т.е. k - это все числа до 444, записываемые только цифрами от 0 до 4. Тогда 2k+1 - это все числа до 999 с нечетной младшей цифрой, а остальными четными, 2k+10 - числа с нечетной цифрой десятков, а остальными цифрами четными и т.д. 2k+111 - числа с тремя нечетными цифрами. Только у этих чисел сумма цифр нечетна. Поэтому, чтобы найти искомую сумму, надо просуммировать по всем таким k величину (2k+1)+(2k+10)+(2k+100)+(2k+111)=8k+222.
Всего имеется 5³=125 троек (a,b,c). Среди них цифра а (также как и цифры b, c) будет принимать каждое значение от 0 до 4 в 125/5=25 тройках. Значит сумма всех таких k будет равна (0+1+2+3+4)·25·(100+10+1)=27750. Итак, искомая сумма равна 8·27750+222·125+1000=250750.