Отрезки параллельных прямых, заключенные между плоскостью и параллельной ей прямой, равны.
АС параллельна ВD, но не равна ей, следовательно, СЕ не параллельна плоскости α и пересекает ее в некоторой т.Е.
АС║BD ⇒ лежат в одной плоскости; т. Е принадлежит прямой CD и лежит в той же плоскости.
В ∆ АСЕ точка B принадлежит АЕ, точка D принадлежит СЕ, BD|║АС по условию, ⇒ треугольники АСЕ и BDE подобны.
Из подобия следует отношение:
АС:BD=АЕ:ВЕ.
Примем длину ВЕ=х
14:12=(13+х):х.
14 х=156+12 х⇒
х=78
АЕ=13+78=91 см