1)Нера́венство треуго́льника в геометрии, функциональном анализе и смежных дисциплинах — это одно из интуитивных свойств расстояния. Оно утверждает, что длина любой стороны треугольника всегда не превосходит сумму длин двух его других сторон. Неравенство треугольника включается как аксиома в определение метрического пространства, нормы и т.д.; также, часто является теоремой в различных теориях.
2)
Под косинусом тупого угла α (90° < α < 180°) будем понимать значение косинуса смежного с ним угла, взятого со знаком минус. Косинус прямого угла будем считать равным0.</p>
Под синусом тупого угла будем понимать синус смежного угла. Синус прямого угла будем считать равным 1.
Из этих определений следует, что для любых углов, таких, что 0 < α < 180°справедливы равенства</p>
sin α = sin (180° – α) и cos α = –cos (180° – α).
Действительно, если α = 90°, то имеем верные равенства.
sin 90° = sin (180° – 90°) и cos 90° = 0 = –cos (180° – 90°).
Если α – острый угол, то 180° – α = β, 90° < α < 180°– тупой угол. Тогда по определению</p>
sin β = sin (180° – β) или sin (180° – α) = sin (180° – (180° – α)) = sin α.
cos β = –cos (180° – β) или cos (180° – α) = –cos (180° – (180° – α)) = –cos α.
Отсюда получаемcos α = cos (180° – α).
Наконец, еслиα (90° < α < 180°)– тупой угол, то равенства видны по определению.</p>