Докажите что, сумма трёх последовательных нечётных чисел кратна 3.

0 голосов
81 просмотров

Докажите что, сумма трёх последовательных нечётных чисел кратна 3.


Алгебра (488 баллов) | 81 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Пусть n-любое число,тогда 2 последующих n+1 и n+2. (n+n+1+n+2)/3=(3n+3)/3=3(n+1)/3=n+1 т.е поделилось без остатка

(44 баллов)
0 голосов
Четное чсло - 2к ( общее обозначние), тогда НЕЧЕТНОЕ - (2к +1). 
3 последовательных нечетных числа: (2к + 1), (2к + 3), (2к +5). 
Найдем сумму: 6к + 9 = 3(2к + 3) - делиться на 3, т.к. в произведение входит 3.
(416 баллов)