Возьмите циркуль и начертите окружность. Затем выберите на этой окружности произвольную точку (назовем ее А). Поставьте циркуль в эту точку и сделайте на окружности засечку (точка В), расстояние до которой будет равно радиусу этой окружности. Переставьте циркуль в полученную точку и вновь отложите на окружности то же расстояние (равное отрезку АВ), а затем повторите операцию еще три раза. В итоге на вашей окружности должны появиться 6 точек (А, В, С, D, E и F), равноудаленных друг от друга. Соедините все полученные точки отрезками, а затем отметьте середины каждой из сторон построенного вами шестиугольника АВСDEF. После этого проведите срединные перпендикуляры к каждому из шести отрезков, продляя их до пересечения с окружностью. Вы получите шесть новых точек на окружности – недостающие вершины 12-угольника. Для завершения построения эти точки нужно будет соединить с ближайшими к ним вершинами шестиугольника ABCDEF. В результате вы получите правильный многоугольник с двенадцатью равными углами и сторонами. Есть еще один способ построения правильного 12-угольника. После проведения окружности и обозначения на ней произвольной точки (А), проведите из этой точки диаметр окружности (назовем его АD). Затем начертите две окружности того же радиуса, что и исходная, с центрами в концах диаметра (А и D). Каждая из этих двух окружностей пересечет исходную в двух нужных вам точках. Затем проведите еще один диаметр исходной окружности, строго перпендикулярный первому (назовем его МР), и из обоих концов диаметра (М и Р) снова проведите окружности того же радиуса. Каждая из них пересечет исходную окружность еще в двух точках. В итоге вы получите 12 точек: A, D, M, P, а также по 2 точки пересечения четырех новых окружностей с исходной. Теперь для завершения построения 12-угольника вам останется только соединить эти точки отрезками.