Toggle navigation
Все ответы
Имя пользователя или адрес электронной почты
Пароль
Запомнить
Вход
Регистрация
|
Я забыл свой пароль
Вопросы
Горячее!
Без ответов
Категории
Задать вопрос
Как найти точки экстремума функции f (x)=5-4x-4x^2 ?
0
голосов
36
просмотров
Как найти точки экстремума функции f (x)=5-4x-4x^2 ?
найти
точки
экстремума
функции
10 - 11 классы
алгебра
Алгебра
Lorrdoooof_zn
(
97
баллов)
16 Май, 18
|
36
просмотров
ответить
комментировать
Ваш комментарий к вопросу:
Отображаемое имя (по желанию):
Напишите мне, если после меня будет добавлен комментарий:
Напишите мне, если после меня добавят комментарий
Конфиденциальность: Ваш электронный адрес будет использоваться только для отправки уведомлений.
Анти-спам проверка:
Чтобы избежать проверки в будущем, пожалуйста
войдите
или
зарегистрируйтесь
.
Прокомментировать
Отмена
Ваш ответ
Отображаемое имя (по желанию):
Отправить мне письмо на это адрес если мой ответ выбран или прокомментирован:
Отправить мне письмо если мой ответ выбран или прокомментирован
Конфиденциальность: Ваш электронный адрес будет использоваться только для отправки уведомлений.
Анти-спам проверка:
Чтобы избежать проверки в будущем, пожалуйста
войдите
или
зарегистрируйтесь
.
Ответить
Отмена
Дан
1
ответ
0
голосов
Как найти точки экстремума функции?
Первое, что необходимо сделать - найти производную уравнения. Допустим, мы получили задание: "Найдите точки экстремума функции y (x), x - аргумент. Для наглядности возьмем функцию у (х) = х3 + 2х2 + х + 54. Проведем дифференцирование и получим следующее уравнение: 3х2 + 4х + 1. В итоге мы получили стандартное квадратное уравнение. Все, что необходимо сделать дальше - приравнять его к нулю и найти корни. Поскольку дискриминант больше нуля (D = 16 - 12 = 4), данное уравнение определяется двумя корнями. Находим их и получаем два значения: 1/3 и -1. Это и будут точки экстремума функции. Однако как все-таки определить, кто есть кто? Какая точка является максимумом, а какая минимумом? Для этого нужно взять соседнюю точку и узнать ее значение. К примеру, возьмем число -2, которое находится слева по координатной прямой от -1. Подставляем это значение в наше уравнение у(-2) = 12 - 8 + 1 = 5. В итоге мы получили положительное число. Это значит, что на промежутке от 1/3 до -1 функция возрастает. Это, в свою очередь, обозначает, что на промежутках от минус бесконечности до 1/3 и от -1 до плюс бесконечности функция убывает. Таким образом, можно сделать вывод, что число 1/3 - точка минимума функции на исследованном промежутке, а -1 - точка максимума.
- Читайте подробнее на SYL.ru:
https://www.syl.ru/article/252141/new_tochki-ekstremuma-funktsii-kak-nayti
borkeds_zn
(
209
баллов)
16 Май, 18
задать связанный вопрос
комментировать
Ваш комментарий к ответу:
Отображаемое имя (по желанию):
Напишите мне, если после меня будет добавлен комментарий:
Напишите мне, если после меня добавят комментарий
Конфиденциальность: Ваш электронный адрес будет использоваться только для отправки уведомлений.
Анти-спам проверка:
Чтобы избежать проверки в будущем, пожалуйста
войдите
или
зарегистрируйтесь
.
Прокомментировать
Отмена
Похожие задачи
Решите плиз, по алгебре
cos 135 sin 8 П/3 tg 7П/3 cos^2 П/ 8 - sin^2 П/8
(3,04:1/3-16,03:7/20)*1/5+0,072*1/3 \дробь
преобразуйте в многочлен:(x-2y)(x+2y)+4y2
Составьте уравнение прямой, параллельной графику функции у = 4х - 3 и проходящей через...