Одна из диагоналей параллелограмма является его высотой и равна 4 см. Найти стороны этого...

0 голосов
60 просмотров

Одна из диагоналей
параллелограмма является его высотой и равна 4 см. Найти стороны этого
параллелограмма, если его площадь равна 12 см²


Геометрия (221 баллов) | 60 просмотров
Дан 1 ответ
0 голосов

Площадь параллелограмма равна произведению основания на высоту, тогда длина первой стороны х1, которая является основанием, равна частному от деления площади на высоту:
х1 = 108 : 9 = 12 (см).
Вторая сторона х2 найдется из прямоугольного треугольника, образованного основанием, второй стороной х2 и диагональю, являющейся одновременно высотой, по теореме Пифагора:
х2 = √х1² + 9²= 15 (см).
108:9=12 -- одна сторона 
Корень (9*9+12*12)=(144+81)**1/2=225**1/2=15 -- вторая сторона
 

(52 баллов)