Из всех прямоугольников, у которых две вершины лежат ** интервале (-2;2) оси абсцисс, а...

0 голосов
39 просмотров

Из всех прямоугольников, у которых две вершины лежат на интервале (-2;2) оси абсцисс, а две другие – на графике функции y=4-x^2 найти прямоугольник наибольшей площади и вычислить эту площадь.


Математика (22 баллов) | 39 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Сразу про наибольшую площадь - она у квадрата  - аксиома - без доказательства.
Делаем  рисунок - график функции
Y = - x² + 4 - парабола, ветви вниз, вершина в точке (0;4)
Рисунок - в приложении.
Из него следует, что у вершины квадрат координата - y = 2*х.
Далее - подставим в уравнение функции.
2*x = -x² + 4
Переписали в удобный вид и получили квадратное уравнение.
- x²- 2x + 4 = 0
Решили и нашли
D= 20 и х1 = 1,236 
Сторона квадрата - a = 2*х = 2.472
И площадь 
S = a² ≈ 6.11 - ОТВЕТ
Числа не очень красивые, но правильные.


image
(500k баллов)
0

Корни квадратного уравнения же получаются 3,23 и -1,23, отрицательный вариант убираем, остается 3,23, почему у вас не так?

0

Наоборот. +/- 1,23 оставляем < 2, а 3,23 - исключаем