Периметр прямоугольного треугольника 24 см, а радиус окружности, описанной около него 1...

0 голосов
24 просмотров

Периметр прямоугольного треугольника 24 см, а радиус окружности, описанной около него 1
0см . Найдите радиус окружности, вписанной в треугольник.


Геометрия (12 баллов) | 24 просмотров
Дан 1 ответ
0 голосов

Центр окружности, описанной около прямоугольного треугольника лежит в середине гипотенузы. Гипотенуза является диаметром окружности, описанной около этого треугольника. Значит гипотенуза равна 1*2 = 2 см
Радиус окружности вписанной в прямоугольный треугольник можно вычислить по формуле  r = (a + b - c) / 2, где a и b -катеты,  с  - гипотенуза.
a + b + c = 24
a + b + 2 = 24
a + b = 22
r = ( 22 - 20)/2 = 1 см

(220k баллов)