Пусть у нас есть число
a5*10^5 + a4*10^(4)+a3*10^3+a2*10^2+a1*10+a0
Во-первых, заметим, что число вида 100...001 = 10^(2n-1) + 1,
где нулей - четное количество, такое число обязательно делится на 11.
Представим наше число в таком виде:
a0 + (11*a1-a1) + (99*a2+a2) + (1001*a3-a3) + (9999*a4+a4) + (100001*a5-a5) =
= (11*a1 + 99*a2 + 1001*a3 + 9999*a4 + 100001*a5) + (a0-a1+a2-a3+a4-a5)
1 скобка безусловно делится на 11, по своим коэффициентам.
Значит, если 2 скобка равна 0 или кратна 11, то число кратно 11.