1) ** доске были написаны 10 последовательных натуральных чисел. Когда стёрли одно из...

0 голосов
215 просмотров

1) На доске были написаны 10 последовательных натуральных чисел. Когда стёрли одно из них, то сумма девяти оставшихся оказалась равна 2017. Какие числа остались на доске?


Математика (82 баллов) | 215 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

5/Задание № 3:

На доске были записаны 10 последовательных натуральных чисел. Когда стёрли одно из них, то сумма девяти оставшихся получилась 2017. Какое число стёрли?

РЕШЕНИЕ: Найдем сумму 10 чисел: х+х+1+х+2+х+3+х+4+х+5+х+6+х+7+х+8+х+9=10х+45

Если вычеркнули наименьшее число, то сумма стала 9х+45, если вычеркнули наиболее число, то сумма стала 9х+36.

Значит, число 2017 с одной стороны не меньше 9х+36, с другой стороны не больше 9х+45.

9х+36<=2017</p>

9х<=1981</p>

х<=220+1/9</p>

9х+45>=2017

9х>=1972

х>=219+1/9

Значит, х=220.

Сумма 10 чисел: 10х+45=10*220+45=2245

Вычеркнутое число 2245-2017=228

ОТВЕТ: 228

(56.7k баллов)