Укажите верные утверждения. 1. В любую рав­но­бед­рен­ную тра­пе­цию можно впи­сать...

0 голосов
82 просмотров

Укажите верные утверждения.

1. В любую рав­но­бед­рен­ную тра­пе­цию можно впи­сать окруж­ность.
2. Около лю­бо­го пра­виль­но­го мно­го­уголь­ни­ка можно опи­сать не более одной окруж­но­сти.
3.Во­круг лю­бо­го тре­уголь­ни­ка можно опи­сать окруж­ность.
4. Цен­тром окруж­но­сти, впи­сан­ной в тре­уголь­ник, яв­ля­ет­ся точка пе­ре­се­че­ния се­ре­дин­ных пер­пен­ди­ку­ля­ров к его сто­ро­нам.
5.Центр окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка со сто­ро­на­ми, рав­ны­ми 3, 4, 5, на­хо­дит­ся на сто­ро­не этого тре­уголь­ни­ка.
6. Цен­тром окруж­но­сти, опи­сан­ной около квад­ра­та, яв­ля­ет­ся точка пе­ре­се­че­ния его диа­го­на­лей.
 7.Около лю­бо­го ромба можно опи­сать окруж­ность.


Математика (75 баллов) | 82 просмотров
Дан 1 ответ
0 голосов

1. НЕВЕРНО, т.к. по свойству описанного четырехугольника для этого должны быть равны суммы противоположных сторон, это не всегда будет так.
2. Около любого правильного многоугольника: 1) либо нельзя описать окружность. 2) можно описать не более одной окружности. Утверждение 1 не противоречит второму, т.е. ВЕРНО.
3. ВЕРНО, есть такая теорема.
4.НЕВЕРНО, пересечение серединных перпендикуляров - центр описанной окружности, а вписанной - биссектрис.
5. ВЕРНО. Треугольник со сторонами 3,4 и 5 - прямоугольный (по обратной т. Пифагора) => центр описанной окружности лежит на середине гипотенузы.
6. ВЕРНО, т.к. диагональ делит квадрат на 2 прямоугольных треугольника, далее как в 5.
7. НЕВЕРНО, т.к. свойство вписанного четырехугольника говорит о том, что суммы противоположных углов равны 180, а это не всегда так.