3-й варіант1. Кінці відрізка, який не перетинає площину, віддалені від неї ** 3 см і 8...

0 голосов
448 просмотров
3-й варіант

1.
Кінці
відрізка, який не перетинає площину, віддалені від неї на 3 см і 8 см. Проекція
відрізка на площину дорівнює 12 см. Знайти довжину відрізка.


2.
З
точки, яка знаходиться на відстані 6 см від площини, проведені дві похилі. Знайти відстань між основами похилих,
якщо кут між кожною похилою та її проекцією дорівнює 30°, а кут між проекціями похилих
120°.


3.

З вершини А прямокутника АВС
D зі сторонами 7 см і 14 см до його площини
проведено перпендикуляр АМ = 7 см. Знайти відстань від точки

M до прямих DС і DВ.

Геометрия (15 баллов) | 448 просмотров
0

пожалуйста

0

ну просто позарез надо завра контрольная а пропустил много

Дан 1 ответ
0 голосов
Правильный ответ

1)Концы отрезка, который не пересекает плоскость, отдалены от нее на 3 см и 8 см. Проекция отрезка на плоскость равна 12 см. Найти длину отрезка. 

-----

Обозначим отрезок АВ. Расстоянием от точки до плоскости является длина отрезка, проведенного к ней перпендикулярно

АА1 и ВВ1 перпендикулярны плоскости, следовательно, перпендикулярны В1А1. 

АА1║ВВ1, 

АВВ1А1 - прямоугольная трапеция. 

ВВ1=3 см.АА1=8 см,

ВС║В1А1 ⇒ А1С=ВВ1=3 см, АС=8-3=5 см. 

ВС=В1А1=12 см. 

Катеты прямоугольного ∆ АВС относятся как 5:12 - треугольник из Пифагоровых троек, ⇒гипотенуза АВ=13 см. 

                    * * *

2)Из точки, которая находится на расстоянии 6 см от плоскости, проведены две наклонные. Найти расстояние между основаниями наклонных, если угол между каждой наклонной и ее проекцией равен 30°, а угол между проекциями наклонных 120°. 

-------

Наклонные АВ и АС,  расстояние до плоскости АН=6 см,  АВН=АСН=30°

ВН=СН=АН:tg30°=6√3

∆АНС равнобедренный, угол ВНС=120° ( дано). 

Проведем высоту НМ к основанию ВС. Высота в равнобедренном треугольнике - биссектриса и медиана. ⇒ ∆ ВНМ=∆ СНМ, ∠ВНМ=СНМ=60°

ВМ=ВН•sin60°=6√3•√3/2=9 

BC=2•BМ=18 см (по т.косинусов ВС также равно 18 см)

                     * * * 

3)Из вершины А прямоугольника АВСD со сторонами 7 см и 14 см к его плоскости проведен перпендикуляр АМ=7 см. Найти расстояние от точки М до прямых и DB.

--------

Примем АВ=14 см, АD=7 см. Расстояние от точки до прямой измеряется длиной отрезка, проведенного перпендикулярно от точки до прямой. По т. о 3-х перпендикулярах МD пп DC, МВ пп ВС.

В прямоугольном ∆ MAD катеты равны, следовательно, он равнобедренный с острыми углами, равными 45°. 

MD=AD:sin45°=7√2.

Из прямоугольного ∆ МАВ расстояние МВ=√(AB²+AM²)=√(196+49)=7√5 см

Расстояние от М до BD отрезок МН, перпендикулярный диагонали ABCD.

По т. о 3-х перпендикулярах МН⊥DB,⇒ его проекция АН⊥DB.

АН=AD•AB:BD

∆ ADB=∆ MAB по двум катетам,⇒ DB=MB=7√5

AH=7•14:7√5=14/√5

MH=√(AM²+AH²)=√(441/5)=21/√5=4,2√5 или ≈ 9,39 см



image
(228k баллов)