Радиус окружности, описанной около правильного четырёхугольника равен см. Вычислите...

0 голосов
91 просмотров

Радиус окружности, описанной около правильного четырёхугольника равен 6\sqrt{2} см. Вычислите отношение периметра этого четырёхугольника к длине вписанной в него окружности.


Геометрия (86 баллов) | 91 просмотров
Дан 1 ответ
0 голосов

Радиус описанной окружности равен половине диагонали, значит длина диагонали квадрата=12*sqrt(2), а сторона квадрата=диагональ*sin 45=12, P=48

Радиус вписанной окружности равен половине стороны, значит=6, Длина вписанной окружности=2p*6=12p

отношение=48/12p=4/p

(7.5k баллов)