Даны три числа 33, 66, 88 в различных системах счисления. К этим числам прибавили по...

0 голосов
42 просмотров

Даны три числа 33, 66, 88 в различных системах счисления. К этим числам
прибавили по единице и получили во всех системах счисления 100. Найти зна-
чения всех этих чисел в десятичной системе счисления.


Информатика (15 баллов) | 42 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Если при сложении с единицей в некоторой системе счисления из двухзначного числа получается трехзначное, то двухзначное число было максимально возможным двухзначным числом, записанным в этой системе и обе его цифры были на единицу меньше основания системы счисления.
Таким образом, можно утверждать, что заданные числа это 33₄, 66₇, 88₉
Число 100 в системе счисления по оcнованию n равно n², т.е. для указанных чисел это будут значения 4²=16, 7²=49 и 9²=81. Остается вычесть единицу.
Соответственно, в десятичной системе 33₄=15, 66₇=48, 88₉=80

(150k баллов)