Первая труба пропускает на 5 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 200 литров она заполняет на 2 минуты дольше, чем вторая труба.
1-ая труба пропускает х (л\мин) 2-ая труба пропускает (х + 5) л\мин Время заполнения резервуара 1-ой трубой = (200/ х) мин Время заполнения 2-ой трубой = ( 200/(х +5) мин Составим уравнение: 200/х - 200/(х+5) = 2 200* (х + 5) - 200х = 2(х^2 + 5x) 200x + 1000 - 200x = 2x^2 + 10x 2x^2 + 10x = 1000 x^2 + 5x = 500 x^2 + 5x - 500 = 0 D = 25 - 4 (-500) = 25 + 2000 = 2025 YD = 45 x1 = (-5 +45):2 = 20 x2 = (-5 -45):2 = -25 Ответ. 20л воды в минуту пропускает 1-ая труба.