F(x)=2x*sinx-1, x0=pi/4

0 голосов
106 просмотров

F(x)=2x*sinx-1, x0=pi/4


Алгебра (14 баллов) | 106 просмотров
Дан 1 ответ
0 голосов

. f(x)=x² x₀=1
1) f(x₀)=f(1)=1²=1
2) f '(x) = (x²)' =2x
f ' (x₀) = f ' (1) = 2*1=2
3) y=1+2(x-1)=1+2x-2=2x-1
y=2x-1 - уравнение касательной.

2. f(x)=x³ x₀=2
1) f(x₀)=f(2)=2³=8
2) f '(x)=(x³)' =3x²
f '(x₀)=f ' (2) = 3*2²=12
3) y=8+12(x-2)=8+12x-24=12x-16
y=12x-16 - уравнение касательной.

3. f(x)=3/x x₀= -1
1) f(x₀)= f(-1)=3/(-1)= -3
2) f ' (x)=(3/x)' = -3/x²
f ' (x₀) = f ' (-1)= -3/(-1)² = -3
y=-3 + (-3) (x-(-1))=-3 -3(x+1)=-3-3x-3=-3x-6
y= -3x-6 - уравнение касательной.

4. f(x)=√x x₀=4
1) f(x₀)=f(4)=√4 = 2
2) f ' (x)=(√x) ' = 1
2√x
f ' (x₀) = f ' (4) = 1 = 1/4
2√4
3) y=2 + 1/4(x-4) =2+ (1/4)x-1 = (1/4)x+1
y=(1/4)x+1 - уравнение касательной.

(85 баллов)