task/2608304
------------------
Проинтегрировать функцию (x+2) / (x²-3x+2)
--------------
решение :
(x+2) / (x²-3x+2) = (x+2) / (x -1)(x -2) =(4x - 4 -3x +6) / (x -1)(x - 2) =
(4(x -1) -3(x -2) ) / (x-1)(x-2) = 4(x -1) / (x-1)(x-2) -3(x -2) / (x-1)(x-2) =
4 / (x-2) - 3 / (x-1) .
---
∫ (x+2) / (x²-3x+2) dx = ∫(4 / (x-2 )- 3 / (x-1) ) dx = 4∫1/(x-2)dx - 3∫1/(x-1)dx + =
4∫1/(x-2)d(x -2)- 3∫1/(x-1)d(x-1) = 4Ln|x-2| - 3Ln|x-1| + LnC= Ln C(x-2)⁴ / |x-1|³ .
* * * P.S. метод неопределенных коэффициентов * * *
(x+2) / (x²-3x+2)= || x² -3x +2 =(x - x₁)(x - x₂) =(x -2)(x-1) || =
(x+2) / (x-2)(x-1)= A/(x -2)+B /(x-1) = (Ax-A+Bx-2B) / (x-1)(x-2) =
( (A+B)x -(A +2B) ) / (x-1)(x-2) ;
{A+B =1; { A =4.
{A +2B = -2 . { B = - 3.
--------------
Удачи !