** сторонах AB,BC и CA треугольника ABC отмечены соответственно точки P,Q и R. Известно,...

0 голосов
94 просмотров

На сторонах AB,BC и CA треугольника ABC отмечены соответственно точки P,Q и R. Известно, что AP/PB=BQ/QC=CR/RA=4, а площадь треугольника ABC равна 25 кВ.смЧему равна площадь треугольника PQR(в кВ.см)?


Геометрия (19 баллов) | 94 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Проще всего представить треугольник АВС равнобедренным с основанием в 10 см и высотой в 5 см.
Боковые стороны равны по 5√2 см.
Тогда его площадь соответствует заданию:
S = (1/2)*10*5 = 25 см².
Углы при основании равны 45 градусов, при вершине - 90 градусов.
По заданию АР = (4/5)*5√2 = 4√2 см.
                    PB = (1/5)*5√2 = √2 см.
                    BQ = AP = 4√2 см,
                    QC = PB = √2 см.
                    RC = (4/5)*10 = 8 см,
                    AR = 10 - 8 = 2 см.   
Теперь можно определить длины сторон искомого треугольника PQR.
PQ = √(√2)²+(4√2)²) = √(2+32) = √34  ≈  5,83095189 см.
PR = √(2²+(4√2)²-2*2*4√2*cos45°) = √20 = 2√5 ≈ 4,472136 см.
RQ = 
√((√2)²+8²-2*√2*8*cos45°) = √50  ≈ 7,0710678 см.
Теперь по формуле Герона находим площадь треугольника 
PQR.
S = √(p(p-a)(p-b)(p-c)). где р - полупериметр, р = 8,6870778 см.
Подставив данные, получаем S = 13 см
².

(309k баллов)