1)lim (6n³-4n+3)/(3n²+5n+1)=lim (6-4/n²+3/n³)/(3/n+5/n²+1/n³)=∞
n→∞ n→∞
2)lim (3x+1)/(1-2x)=(-6+1)/(1+4)=-5/5=-1
x→-2
3)y=4/(12x-5), y´=(0(12x-5)-4.12)/(12x-5)²=-48/(12x-5)²
y´(2)=-48/19²=-48/361
4)∫(3sinx+4x³-1)dx=-3cosx+xˇ4 -x +c
(∫sinxdx=-cosx, ∫xˇndx=(xˇ(n+1)/(n+1), ∫dx=x)