Вариант 1.
1.
[4^(1,5) * 8^(4)] / [16^(2,5) * 64^(0,5)] =
= [2^(2*1,5) * 2^(3*4)] / (2^(4*2,5) * 2^(6*0,5)] =
= [2^(3) * 2^(12)] / (2^(10) * 2^(3)] =
= [2^(3+12)] / (2^(10+3)] =
= 2^(15) / 2^(13) =
= 2^(15-13) =
= 2² = 4.
2.
(64-8c³)/(16-4c²) * (4+2c) =
= [8*(8-c³)]/[4*(4-c²)] * (4+2c) =
= [8*(2-c)(4+2c+c²)]/[4*(2-c)(2+c)] * (2+c)*2 =
= 8/2 * (4+2c+c²) = 4*(4+2c+c²).