1) lim(x->-2) (2x^2-x-10)/(2x+4) = lim(x->-2) [(x+2)(2x-5)]/[2(x+2)] = lim(x->-2) (2x-5)/2 = (-4-5)/2 = -9/2
2) lim(n->oo) (2n + V(n^2+1) - 1)/кор3(5-n^3) = lim(n->oo) (2 + V(1+1/n^2) - 1/n) /
/ кор3(5/n^3-1) = lim(n->oo) (2 + V(1+0) - 0)/кор3(0-1) = 3/(-1) = -3
3) lim(x->0) (cos(4x) - 1)/(x*tg(3x)) = lim(x->0) (-2sin^2(2x)*cos(3x))/(x*sin(3x)) =
= -2*lim(x->0) sin^2(2x)/(2x)^2*(2x)^2*(3x)/sin(3x)*cos(3x)/(x*3x) =
= -2*lim(x->0) 1*4x^2*1*cos(3x)/(3x^2) = -2*4*cos(0)/3 = -8/3
4) lim(x->oo) (x^2/(x+2) - x) = lim(x->oo) (x^2 - x(x+2))/(x+2) = lim(x->oo) (-2x)/(x+2) = -2