Помогите решить пожалуйста

0 голосов
63 просмотров

Помогите решить пожалуйста


image

Алгебра (356 баллов) | 63 просмотров
Дан 1 ответ
0 голосов
\left \{ {{ \sqrt{x^2+8}+ \sqrt{y^2-8} =6} \atop {x^2+y^2=20}} \right.;\\
 \left \{ {{ \sqrt{x^2+8}+ \sqrt{20-x^2-8} =6} \atop {y^2=20-x^2}} \right.;\\
 \left \{ {{ \sqrt{x^2+8}+ \sqrt{12-x^2} =6\ \ \ (1)} \atop {y^2=20-x^2\ \ \ (2)}} \right.;\\

Решим отдельно уравнение (1):
\sqrt{x^2+8}+ \sqrt{12-x^2} =6\\

 \left \{ {{\sqrt{t+8}+ \sqrt{12-t} =6} \atop {x^2=t \geq 0}} \right.\\

 \left \{ {({\sqrt{t+8}+ \sqrt{12-t})^2 =6^2} \atop {x^2=t \geq 0\ and \ t+8 \geq 0\ and\ 12-t \geq 0}} \right.\\

 \left \{ {({\sqrt{t+8})^2+ 2*\sqrt{t+8}*\sqrt{12-t}+(\sqrt{12-t})^2 =36} \atop {x^2=t \geq 0\ and \ t \geq -8\ and\ t \leq 12}} \right.\\

 \left \{ {t+8+ 2\sqrt{(t+8)(12-t)}+12-t =36} \atop {x^2=t\ and \ 0\leq t \leq 12}} \right.\\

\left \{ {\sqrt{(t+8)(12-t)}=8} \atop {x^2=t\ and \ 0\leq t \leq 12}} \right.\\

 \left \{ (t+8)(12-t)=64} \atop {x^2=t\ and \ 0\leq t \leq 12}} \right.\\

 \left \{ -t^2+4t+96=64} \atop {x^2=t\ and \ 0\leq t \leq 12}} \right.\\

 \left \{ t^2-4t-32=0} \atop {x^2=t\ and \ 0\leq t \leq 12}} \right.\\

 \left \{ t^2-4t-32=0} \atop {x^2=t\ and \ 0\leq t \leq 12}} \right.\\

 \left \{ t=8\ or\ t=-4} \atop {x^2=t\ and \ 0\leq t \leq 12}} \right.\\

x^2=8;\\
x=2 \sqrt{2}\ or\ x=-2 \sqrt{2}

Возвращаемся к начальной системе и имеем:
\left \{ {{y^2=20-x^2=20-8=12} \atop {x=2 \sqrt{2}\ or\ x=-2 \sqrt{2}}} \right.;\\

 \left \{ {{y=2 \sqrt{3}\ or\ y=-2 \sqrt{3}}} \atop {x=2 \sqrt{2}\ or\ x=-2 \sqrt{2}}} \right.;

Ответ: (2 \sqrt{2};\ 2 \sqrt{3} ),\ (2 \sqrt{2};\ -2 \sqrt{3} ); (-2 \sqrt{2};\ 2 \sqrt{3} ); (-2 \sqrt{2};\ -2 \sqrt{3} )
(8.6k баллов)