Пусть f (x) – квадратный трехчлен. Известно, что уравнение f (x) • f (1/x ) = 0 имеет...

0 голосов
37 просмотров

Пусть f (x) – квадратный трехчлен. Известно, что уравнение f (x) • f (1/x ) = 0 имеет четыре корня, сумма которых равна нулю. Докажите, что тогда и сумма каких-то двух корней этого уравнения равна нулю.


Математика (14 баллов) | 37 просмотров
Дан 1 ответ
0 голосов

Пусть X₁; X₂ - корни f(x);
1) Пусть X₁ ≠ 0, X₂ ≠ 0;

Тогда 1/X₁ и 1/X₂ - корни f(1/X)
X₁ + X₂ + 1/X₁ + 1/X₂ = 0 (обознач. равенство 1) - по условию;
X₁ и 1/X₁ - одного знака;
X₂ и 1/X₂ - одного знака;
⇒ X₁ и X₂ - разных знаков, иначе не будет выполнено (1);
Пусть X₁ > 0, не умаляя общности, т.к. иначе можно поменять X₁ и X₂ местами;
Пусть X₁ ≥1, не умаляя общности, т.к. иначе можно заменить на 1/X₁;
Пусть также X₂ ≤ -1, по тем же причинам;
(1) ⇒ X₁ + 1/X₁ = -(X₂ + 1/X₂) (обознач. 2)
X₁ + 1/X₁ строго возрастает при X₁ ≥ 1;
-(X₂ + 1/X₂) строго убывает при X₂ ≤ -1;
⇒ X₁ + 1/X₁ = k имеет не более одного решения при X₁ ≥ 1;
и X₂ + 1/X₂ = L имеет не более одного решения при X₂ ≤ -1;
X₁ = -X₂ является решением (2) и единственным, как описано выше;
Значит, X₁ + X₂ = 0.

2) Пусть X₁ = 0 или X₂ = 0, тогда у f(1/X) будет менее двух корней, а значит и у f(x) · f(1/X) будет менее 4 корней (а по условию их четыре).

(270 баллов)
0

спасибо большое)

0

Думаю, тебе не составит труда сделать мой ответ лучшим?