Найти сумму цифр числа 2018 в степени 2017, затем сумму цифр от этой суммы и так 4 раза

0 голосов
37 просмотров

Найти сумму цифр числа 2018 в степени 2017, затем сумму цифр от этой суммы и так 4 раза


Математика (86 баллов) | 37 просмотров
0

а что значит итак?

0

Если не можете решить, обойдитесь без комментариев. Задача олимпиадная, нужен хороший ум. 4раза повторяется процесс нахождения суммы цифр десятичной записи числа

0

но в степень каждый раз возводится?

0

2018 в степени 2017. Для этого результата нужно найти сумму цифр, это будет многозначное число, потом найти его сумму цифр и так 4 раза

0

Возьмем самое простое: 2^8 = 256, сумма цифр 2+5+6=13, ее сумма 1+3=4. А теперь возьмем 2^10=1024, сумма цифр равна 1+0+2+4=7. То есть сумма цифр никак не зависит ни от основания, ни от показателя. И как это считать?

0

Думаю, в условии что-то не так.

0

Если нужна только самая последняя сумма, то посчитается — нужно оценить, чему это число равно, а потом считать остаток от деления на 9.

Дан 1 ответ
0 голосов
Правильный ответ

Nelle987 подала хорошую мысль - посчитать остаток от деления на 9.
Далее все знаки = будут обозначать "имеет такой же остаток от деления на 9"
2018^2017 = 2^2017 = 2*2^2016 = 2*(2^6)^336 = 2*64^336 = 2*1^336 = 2
Эта сумма сумм цифр равняется 2.
Добавим, что это число называется цифровой корень.
Может ли эта 4-ая сумма сумм оказаться двузначной, и только 5-ая однозначной?
Допустим, это так. Оценим количество цифр в числе 2018^2017.
Для этого найдем его десятичный логарифм.
lg(2018^2017) = 2017*lg(2018) ≈ 2017*3,305 = 6666,185
Значит, в этом числе всего лишь 6667 цифр. Если даже там все 9, сумма цифр
не более чем 9*6667 = 60003.
Возьмем чуть меньшее число, 59999. Его сумма цифр (вторая) равна
5 + 4*9 = 5 + 36 = 41.
Значит, вторая сумма цифр не более 41. Пусть будет 39.
Тогда третья сумма равна 12, а 4-ая равна 3, то есть однозначная.
Вывод: 4-ая сумма цифр числа 2018^2017 - однозначное число.
Ответ: цифровой корень числа 2018^2017 равен 2.

(320k баллов)
0

Там сказано итак 4 раза. Даже , если принять, что в степень больше ничего не возводится, хватит ли 4-х раз, чтобы добраться до остатка? Число-то -огромное!

0

Уверен, что хватит. Даже если число состоит из миллиарда знаков, то его сумма цифр не более, чем 9000000000 - всего лишь 9 знаков. А его сумма цифр не более, чем 9*9 = 81. Уже третья сумма, в крайнем случае 4-ая будет однозначной.

0

Идея понятная, но хотелось бы поподробнее.

0

Я вроде нормально объяснил. Сумма цифр очень быстро уменьшается. 4 итераций хватает за глаза.

0

Спасибо! Можно было бы и без логарима взять оценку более грубую 9*4*2018=72648. Все равно сошлось бы также быстро.

0

Извините, 9*4?2017=72612, но это роли не играет.