Синус двугранного угла при боковом ребре правильной четырехугольной пирамиды равен 12/13....

0 голосов
120 просмотров

Синус двугранного угла при боковом ребре правильной четырехугольной пирамиды равен 12/13. Найдите площадь боковой поверхности пирамиды, если площадь её диагонального сечения равна 7 корней из 13.


Геометрия (86 баллов) | 120 просмотров
0

Правильно ли дано задание: "двугранного угла при боковом ребре "? Двугранный угол образуется плоскостями, почему указано "при боковом ребре "?

0

так ведь двугранный угол может быть и при ребре основания... между плоскостью основания и плоскостью боковой грани... а тут угол между боковыми плоскостями...

0

Это угол между двумя боковыми гранями. Как это решать, я не знаю.

Дан 1 ответ
0 голосов
Правильный ответ

Проведем DK⊥SC.
ΔDKC = ΔBKC по двум сторонам и углу между ними (DC = BC как стороны квадрата, КС - общая, углы при вершине С равны, так как боковые грани - равные равнобедренные треугольники).
Тогда и ВК⊥SC, значит
∠DKB - линейный угол двугранного угла при боковом ребре пирамиды.
Обозначим его α.
sinα = 12/13

SC⊥DKB (ребро SC перпендикулярно двум пересекающимся прямым этой плоскости), ⇒
SC⊥OK.
Тогда отрезок ОК параллелен высоте треугольника ASC, проведенной из вершины А (обозначим ее h), и равен ее половине.
Sasc = 1/2 · SC · h = 1/2 · SC · 2OK = SC·OK = 7√13        ( 1 )

ΔOKD: OK = KD · cos (α/2)

Угол α тупой, т.к. sin(α/2) = OD/DK > OD/DC = 1/√2
cos α  = - √(1 - sin²α) = - √(1 - 144/169) = - √(25/169) = - 5/13

cos (α/2) = √((1 + cos α)/2) = √((1 - 5/13)/2) = √(8/26) = √(4/13) = 2/√13

Вернемся к ΔOKD:
ОК = KD · cos (α/2) = KD · 2/√13
Подставим в равенство (1):
SC · KD · 2/√13 = 7√13
SC · KD = 7√13 · √13 / 2 = 91/2
Но KD - высота боковой грани SCD, проведенная к ребру SC.
Sscd = 1/2 · SC · KD = 1/2 · 91/2 = 91/4
Тогда площадь боковой поверхности:
Sбок = 4 · Sscd = 4 · 91/4 = 91

(80.0k баллов)