Решите уравнение (методом подстановки) (2x^2+x-1)(2x^2+x-4)+2=0

0 голосов
25 просмотров

Решите уравнение (методом подстановки) (2x^2+x-1)(2x^2+x-4)+2=0


Алгебра (365 баллов) | 25 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Подстановки? Методом замены, наверное.

(2x^2+x-1)(2x^2+x-4)+2=0

Замена:
2x^2+x=t \\ \\ (t-1)(t-4)+2=0 \\ t^2-5t+4+2=0 \\ t^2-5t+6=0 \\ t_1+t_2=5 \cup t_1t_2=6 \\ t_1=2 \cup t_2=3

Обратная замена:
1) \\ 2x^2+x=2 \\ 2x^2+x-2=0 \\ D=1+16=17 \\ x_1= \dfrac{-1+ \sqrt{17} }{4} \\ x_2= \dfrac{-1- \sqrt{17} }{4} \\ \\ 2) \\ 2x^2+x=3 \\ 2x^2+x-3=0 \\ D=1+24=25=5^2 \\ x_1= \dfrac{-1+5}{4}=1 \\ x_2= \dfrac{-1-5}{4}=-1,5

Ответ: -1,5;\ \dfrac{-1- \sqrt{17} }{4} ;\ \dfrac{-1+ \sqrt{17} }{4};\ 1

(80.5k баллов)