Рассмотрим треугольники АОВ и АОМ:
∠АОВ = ∠АОМ = 90° (т.к. АК⊥ ВМ)
∠ВАО = ∠МАО (т.к. АК - биссектриса ∠ВАС)
АО - общая сторона
Следовательно, ΔАОВ = ΔАОМ, по стороне и прилежащей к ней углам.
В равных треугольниках соответствующие стороны равны, отсюда:
АМ = АВ = 14 см
В треугольнике АВС:
СМ = АМ = 14 см (т.к. ВМ - медиана)
АС = АМ + СМ = 14 + 14 = 28 см
Ответ: 28 см.