![image](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bl%7D+%5Ctext%7Blog%7D_%7B2%7D%5Cleft%28+2%5E%7Bx%7D-1%5Cright%29+%5Ctimes+%5Ctext%7Blog%7D_%7B2%5E%7B-1%7D%7D%5Cleft%28+2x-2%5Cright%29+%3E%5Ctext%7B-2%7D%5C%5C+-%5Ctext%7Blog%7D_%7B2%7D%5Ctext%7B%282%7D%5E%7Bx%7D-1%5Ctext%7B%2B2%7D%5E%7Bx%7D-2%29%3E-2%5C%5C+%5Ctext%7Blog%7D_%7B2%7D%5Cleft%28+2%5E%7Bx%2B1%7D-3%5Cright%29+%3C2%5Ctext%7Blog%7D_%7B2%7D2%5C%5C+2%5E%7Bx%2B1%7D-3%3C4%5C%5C++2%5E%7Bx%2B1%7D-2%5E%7B1%7D-2%5E%7B0%7D%3C2%5E%7B2%7D%5C%5C+x%2B1-1-0%3C2.%5C%5C+x%3C2.+%5Cend%7Barray%7D)
\text{-2}\\ -\text{log}_{2}\text{(2}^{x}-1\text{+2}^{x}-2)>-2\\ \text{log}_{2}\left( 2^{x+1}-3\right) <2\text{log}_{2}2\\ 2^{x+1}-3<4\\ 2^{x+1}-2^{1}-2^{0}<2^{2}\\ x+1-1-0<2.\\ x<2. \end{array}" alt="\begin{array}{l} \text{log}_{2}\left( 2^{x}-1\right) \times \text{log}_{2^{-1}}\left( 2x-2\right) >\text{-2}\\ -\text{log}_{2}\text{(2}^{x}-1\text{+2}^{x}-2)>-2\\ \text{log}_{2}\left( 2^{x+1}-3\right) <2\text{log}_{2}2\\ 2^{x+1}-3<4\\ 2^{x+1}-2^{1}-2^{0}<2^{2}\\ x+1-1-0<2.\\ x<2. \end{array}" align="absmiddle" class="latex-formula">