I способ (без нахождения корней):
х² - 7х + 12 = х² - 3х - 4х + 12 = х(х - 3) - 4(х - 3) = (х - 3)(х - 4)
II способ (с нахождением корней):
★ Сначала найдём корни данного многочлена:
х² - 7х + 12 = 0
1 способ:
По теореме обратной теореме Виета:
х1 + х2 = -(-7) = 7; х1 * х2 = 12 => х1 = 3; х2 = 4
2 способ:
D = (-7)² - 4 * 1 * 12 = 49 - 48 = 1
x1 = (-(-7) + √1)/(2 * 1) = (7 + 1)/2 = 8/2 = 4
x2 = (-(-7) - √1)/(2 * 1) = (7 - 1)/2 = 6/2 = 3
★ Если многочлен 2-ой степени имеет корни, то его разложение на множители имеет следующий вид:
ах² + bx + c = a(x - x1)(x - x2)
Значит, х² - 7х + 12 = 1 * (х - 3)(х - 4) = (х - 3)(х - 4)