Найдите среднее арифметическое градусных мер большого и меньшего углов выпуклого...

0 голосов
57 просмотров

Найдите среднее арифметическое градусных мер большого и меньшего углов выпуклого четырехугольника два угла которого равны по 60 градусов а остальные углы пропорциональны числам 3: 5


Математика (95 баллов) | 57 просмотров
Дано ответов: 2
0 голосов

Сумма углов выпуклого четырёхугольника равна 360 градусов. Два из них по условию составляют в сумме 120 градусов. Значит на два оставшихся приходится 240 градусов в сумме. 
Пусть в одной части х градусов, тогда один из них по условию 3х, а второй - 5х,
3х+5х=240
х=30
30*3=90,
30*5=150.
Меньшим и большим являются углы в 60 и 150 градусов, тогда (60+150):2=105 градусов.

(29.8k баллов)
0 голосов

360° - 60° * 2 = 240° - сумма двух неизвестных улов.
3 + 5 = 8 (частей) - составляют два неизвестных угла, что соответствует 240°.
240° : 8 = 30° - 1 часть.
Найдем два неизвестных угла:
30° * 3 = 90°
30° * 5 = 150°. =>
больший угол - 150°;
меньший угол - 60°.
Найдем среднее арифметическое градусных мер большого и меньшего углов:
(150° + 60°) : 2 = 105°.
Ответ: 105°.

(48.8k баллов)