Рассмотрим

. Имеем параболу, ветви направлены вверх. Если дискриминант больше нуля, то решением нашей вспомогательной задачи будут те х, при которых отрезок (0;1) попадет на участок отрицательности ,т.е. выполняются следующие условия :
При

решение неравенства принадлежит из 0<x<1