Cos2px/(1+Сtgpx)=0
Сos2px = Cos²px - Sin²px = (Cospx - Sinpx)(Cospx+Sinpx)
1 + Ctgpx = 1 + Cospx/Sinpx = (Sinpx +Cospx)/Sinpx
дробь сократим на (Cospx+Sinpx), уравнение примет вид:
(Cospx-Sinpx)/Sinpx = 0
Ctgpx -1 = 0
Ctgpx = 1
px= arcCtg1 +πk , k∈Z
px = π/4 +πk , k ∈Z
x = π/(4p) + πk/p , k∈Z