Апофема правильной четырехугольной пирамиды равна 6, а угол между плоскостями основания и...

0 голосов
441 просмотров

Апофема правильной четырехугольной пирамиды равна 6, а угол между плоскостями основания и боковой гранью равен 30°.Найдите объем пирамиды.


Геометрия (221 баллов) | 441 просмотров
Дан 1 ответ
0 голосов

SABCD - правильная пирамида. Значит в основании квадрат, а боковые грани - равнобедренные треуг-ки. SH=6 - апофема, проведенная к стороне AD, она является медианой и высотой треуг-ка ASD. Проведем высоту SO. О-точка пересечения дианоналей квадрата ABCD. ОН - перпендикуляр к стороне AD. Треуг. SOH прямоугольный, угол SHO=30, а это и есть угол между плоскостью основания и боковой гранью. В прямоуг. треуг-ке напротив угла 30 гр. лежит катет вдвое меньше гипотенузы: SO=6/2=3.

НО=√(SH^2-SO^2)=√(36-9)=√27=3√3

AB=2HO=2*3√3=6√3

S(основания)=AB^2=(6√3)^2=108

V=1/3*S*H  H=SO=3

V=1/3*108*3=108

(10.6k баллов)