Дано: AB=BC, AD=DC, BE=ED. Доказать: BC параллельно DE.

0 голосов
514 просмотров

Дано: AB=BC, AD=DC, BE=ED. Доказать: BC параллельно DE.


image

Геометрия (15 баллов) | 514 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Дано: AB=BC, AD=DC, BE=ED. Доказать: BC параллельно DE.

Проведем отрезок ВD ∆ ABD~∆ CBD по трём сторонам.--

∠АВD=∠CBD

∆ ВЕD равнобедренный ( BE=ED). Следовательно, ∠DBE=∠EDB.

Из доказанного выше DBE=∠BDE. Эти углы накрестлежащие при пересечении  ED и BC секущей BD. 

Равенство накрестлежащих углов при пересечении двух прямых секущей - признак параллельности этих прямых. ⇒

ВСDE. Доказано.


image
(228k баллов)