Прямые
и
лежат в одной плоскости, если три вектора
компланарны. Тогда смешанное произведение этих трёх векторов должно равняться 0 . Вычислим смешанное произведение:
Нулевую строчку в определителе получили умножив 2 строку на (-2) и прибавив к 3 строке.
Так как смешанное произведение = 0 , то прямые лежат в одной плоскости.
Чтобы составить уравнение этой плоскости можно найти её нормальный вектор как векторное произведение направляющих векторов (Можно было бы воспользоваться уравнением плоскости, проходящей через 3 точки. Две точки мы знаем из уравнений прямых М1 и М2, а третью можно определить, переведя уравнение какой-либо прямой в параметрический вид и придав значение параметру t .) Найдём нормальный вектор плоскости
.