7/Задание
№ 4:
Назовите такое значение параметра a, при котором неравенство ax>7x+2 не имеет решений.
РЕШЕНИЕ:
ax>7x+2
ax-7x>2
(a-7)x>2
Если а=7, то неравенство
0>2 не имеет решений.
Если а>7, то решения x>2/(a-7)
Если а<7, то решения x<2/(a-7)</p>
ОТВЕТ: 7
7/Задание
№ 3:
Сколько корней имеет уравнение: |x+2+|−x−4||−8=x?
РЕШЕНИЕ:
|x+2+|−x−4||−8=x
|x+2+|x+4||−8=x
![\left \{ {{|x+2+x+4|-8=x,x
\geq -4} \atop {|x+2-x-4|-8=x,x\ \textless \ -4}} \right. \\ \left \{
{{|2x+6|-8=x,x \geq -4} \atop {|-2|-8=x,x\ \textless \ -4}} \right. \\ \left \{
{{ \left \{ {{2x+6-8=x,x \geq -3} \atop {-2x-6-8=x,-4 \leq x \ \textless \ -3}}
\right. } \atop {2-8=x,x\ \textless \ -4}} \right. \left \{ {{|x+2+x+4|-8=x,x
\geq -4} \atop {|x+2-x-4|-8=x,x\ \textless \ -4}} \right. \\ \left \{
{{|2x+6|-8=x,x \geq -4} \atop {|-2|-8=x,x\ \textless \ -4}} \right. \\ \left \{
{{ \left \{ {{2x+6-8=x,x \geq -3} \atop {-2x-6-8=x,-4 \leq x \ \textless \ -3}}
\right. } \atop {2-8=x,x\ \textless \ -4}} \right.](https://tex.z-dn.net/?f=+%5Cleft+%5C%7B+%7B%7B%7Cx%2B2%2Bx%2B4%7C-8%3Dx%2Cx%0A%5Cgeq+-4%7D+%5Catop+%7B%7Cx%2B2-x-4%7C-8%3Dx%2Cx%5C+%5Ctextless+%5C+-4%7D%7D+%5Cright.+%5C%5C+%5Cleft+%5C%7B%0A%7B%7B%7C2x%2B6%7C-8%3Dx%2Cx+%5Cgeq+-4%7D+%5Catop+%7B%7C-2%7C-8%3Dx%2Cx%5C+%5Ctextless+%5C+-4%7D%7D+%5Cright.+%5C%5C+%5Cleft+%5C%7B%0A%7B%7B+%5Cleft+%5C%7B+%7B%7B2x%2B6-8%3Dx%2Cx+%5Cgeq+-3%7D+%5Catop+%7B-2x-6-8%3Dx%2C-4+%5Cleq+x+%5C+%5Ctextless+%5C+-3%7D%7D%0A%5Cright.+%7D+%5Catop+%7B2-8%3Dx%2Cx%5C+%5Ctextless+%5C+-4%7D%7D+%5Cright.+)
![\left \{ {{ \left \{
{{2x-2=x,x \geq -3} \atop {-2x-14=x,-4 \leq x \ \textless \ -3}} \right. }
\atop {2-8=x,x\ \textless \ -4}} \right. \\ \left \{ {{ \left \{ {{x=2,x \geq
-3} \atop {3x=-14,-4 \leq x \ \textless \ -3}} \right. } \atop {x=-6,x\
\textless \ -4}} \right. \left \{ {{ \left \{
{{2x-2=x,x \geq -3} \atop {-2x-14=x,-4 \leq x \ \textless \ -3}} \right. }
\atop {2-8=x,x\ \textless \ -4}} \right. \\ \left \{ {{ \left \{ {{x=2,x \geq
-3} \atop {3x=-14,-4 \leq x \ \textless \ -3}} \right. } \atop {x=-6,x\
\textless \ -4}} \right.](https://tex.z-dn.net/?f=%5Cleft+%5C%7B+%7B%7B+%5Cleft+%5C%7B%0A%7B%7B2x-2%3Dx%2Cx+%5Cgeq+-3%7D+%5Catop+%7B-2x-14%3Dx%2C-4+%5Cleq+x+%5C+%5Ctextless+%5C+-3%7D%7D+%5Cright.+%7D%0A%5Catop+%7B2-8%3Dx%2Cx%5C+%5Ctextless+%5C+-4%7D%7D+%5Cright.+%5C%5C+%5Cleft+%5C%7B+%7B%7B+%5Cleft+%5C%7B+%7B%7Bx%3D2%2Cx+%5Cgeq%0A-3%7D+%5Catop+%7B3x%3D-14%2C-4+%5Cleq+x+%5C+%5Ctextless+%5C+-3%7D%7D+%5Cright.+%7D+%5Catop+%7Bx%3D-6%2Cx%5C%0A%5Ctextless+%5C+-4%7D%7D+%5Cright.+)
![\left \{ {{ \left \{
{{x=2,x \geq -3} \atop {x=-14/3,-4 \leq x \ \textless \ -3}} \right. } \atop
{x=-6,x\ \textless \ -4}} \right \left \{ {{ \left \{
{{x=2,x \geq -3} \atop {x=-14/3,-4 \leq x \ \textless \ -3}} \right. } \atop
{x=-6,x\ \textless \ -4}} \right](https://tex.z-dn.net/?f=+%5Cleft+%5C%7B+%7B%7B+%5Cleft+%5C%7B%0A%7B%7Bx%3D2%2Cx+%5Cgeq+-3%7D+%5Catop+%7Bx%3D-14%2F3%2C-4+%5Cleq+x+%5C+%5Ctextless+%5C+-3%7D%7D+%5Cright.+%7D+%5Catop%0A%7Bx%3D-6%2Cx%5C+%5Ctextless+%5C+-4%7D%7D+%5Cright)
Условию раскрытия моделей
соответствуют только первый и третий корни 2 и -6.
ОТВЕТ: 2 корня
7/Задание
№ 1:
Сколько чётных двузначных чисел, которые при делении на
сумму цифр числа дают неполное частное 7 и остаток 3?
РЕШЕНИЕ: Пусть это число
АВ=10a+b. Тогда, 10a+b=7(a+b)+3.
10a+b=7a+7b+3
3a=6b+3
a=2b+1
2b=a-1
Учитывая, что:
- а и b цифры, то есть целые
числа от 0 до 9, но а не ноль, поскольку AB двузначное число
- число AB должно быть четным,
то проверять нечетные b нет смысла
- остаток должен быть меньше
делителя, значит минимально возможная сумма (a+b) равна 4
b=0: a=2*0+1=1 - не может быть
a+b=1<4</p>
b=2: a=2*2+1=5, число 52
b=4: a=2*4+1=9, число 94
При b=6 и более а=2*6+1=13 и
более - не соответствует цифре.
ОТВЕТ: 2 числа