Одна из диагоналей ромба ** 4см больше другой, а площадь равна 96 кв.см. Найдите стороны...

0 голосов
211 просмотров

Одна из диагоналей ромба на 4см больше другой, а площадь равна 96 кв.см. Найдите стороны ромба. Решение нужно без дискриминанта.


Математика (12 баллов) | 211 просмотров
Дано ответов: 2
0 голосов

Пусть BD = x, AC = x + 4
Sabcd = (AC·BD)/2
x(x + 4)/2 = 96
x² + 4x - 192 = 0
D/4 = 4 + 192 = 196
x = - 2 + 14 = 12 x = - 2 - 14 = -16 не подходит по смыслу задачи
BD = 12 см, АС = 16 см
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам.
ΔАОВ: ∠АОВ = 90°, АО = АС/2 = 8 см, ВО = BD/2 = 6 см
по теореме Пифагора
АВ = √(АО² + ВО² ) = √(64 + 36) = 10 см
У ромба все стороны равны.
Ответ: 10 см.

(98 баллов)
0 голосов

S=1/2*d1*d2
d1=d2+4=x
x2+4x-192=0
По формулам Виета
x1=-16 не подходит по ОДЗ x2=12-меньшая диагональ
12+4=16-большая диагональ
Диагонали ромба пересекаются под углом 90 градусов и делятся пополам
По теореме Пифагора 8*8+6*6=100 => сторона равна 10

(1.4k баллов)