Если ось симметрии двух пятиугольников, было бы пятиугольной докажи

0 голосов
22 просмотров

Если ось симметрии двух пятиугольников, было бы пятиугольной докажи


Геометрия (12 баллов) | 22 просмотров
Дан 1 ответ
0 голосов

Две точки А и А1 называются симметричными друг другу относительно прямой m, если прямая m перпендикулярна отрезку АА1 и проходит через его середину. Прямую m называют осью симметрии.
При сгибании плоскости чертежа по прямой m – оси симметрии симметричные фигуры совместятся.
Прямоугольник имеет две оси симметрии.
Квадрат имеет четыре оси симметрии.
Любая прямая, проходящая через центр окружности, является ее осью симметрии. Окружность имеет бесконечное множество осей симметрии.
Точки А и А1 симметричны относительно прямой m, так как прямая m перпендикулярна отрезку АА1 и проходит через его середину.

m – ось симметрии.



Прямоугольник ABCD имеет две оси симметрии: прямые m и l.

Если чертеж перегнуть по прямой m или по прямой l, то обе части чертежа совпадут.





Квадрат ABCD имеет четыре оси симметрии: прямые m, l, k и s.

Если квадрат перегнуть по какой-либо из прямых: m, l, k или s, то обе части квадрата совпадут.







Окружность с центром в точке О и радиусом ОА имеет бесчисленное количество осей симметрии. Это прямые: m, m1, m2, m3 ...









Задание. Построить точку А1, симметричную точке А(-4; 2) относительно оси Ох.

Построить точку А2, симметричную точке А(-4; 2) относительно оси Оy.

Точка А1(-4; -2) симметрична точке А(-4; 2) относительно оси Ох, так как ось Ох перпендикулярна отрезку АА1 и проходит через его середину.

У точек, симметричных относительно оси Ох абсциссы совпадают, а ординаты являются противоположными числами.

Точка А2(4; -2) симметрична точке А(-4; 2) относительно оси Оy, так как ось Оу перпендикулярна отрезку АА2 и проходит через его середину.

У точек, симметричных относительно оси Оу ординаты совпадают, а абсциссы являются противоположными числами.



(110 баллов)