Помогите решить 1) 3cos^2x-2,5sin2x-2sin^2x=0 2)корень квадратный из 3sinx-cosx=2

0 голосов
140 просмотров

Помогите решить 1) 3cos^2x-2,5sin2x-2sin^2x=0
2)корень квадратный из 3sinx-cosx=2


Алгебра (19 баллов) | 140 просмотров
0

2-ое точно правильно записано?

0

lf

0

LF

0

ДА

Дан 1 ответ
0 голосов
1) 3Cos^2x-2,5Sin2x-2Sin^2x=0
3Cos
²x -5SinxCosx -2Sin²x = 0 | : Cos²x
3 -5tgx -2tg²x = 0
2tg²x +5tgx -3 = 0
tgx = t
2t² +5t -3 = 0
D = 49
t₁ = (-5+7)/4 = 1/2
t₂= (-5-7)/4 = -3
a) tgx = 1/2
x = arctg0,5+πk , k∈Z
б) tgx = 3
x = arctg3 + πn , n∈Z
2) √(3Sinx-Cosx)=2 |²
3Sinx - Cosx = 4
3*2tgx/2/(1 + tg²x/2) - (1 - tg²x/2)/(1 + tg²x/2) = 4
6tgx/2/(1 + tg²x/2) - (1 - tg²x/2)/(1 + tg²x/2) - 4 = 0
(6tgx/2 -1 + tg²x/2 - 4 - tg²x/2)/(1 + tg²x/2)
-3tg²x/2 + 6tgx/2  -5 = 0   (1 + tg²x/2≠0)
tgx/2 = z
3x² -6z +5 = 0
уравнение корней не имеет( или что-то с условием...)

(12.4k баллов)
0

tgx=-3, а не tgx=3

0

согласна. минус упустила...