Решение. Пусть встреча Шарика с последним вагоном произошла в точке D (рис.4).Треугольники АВС и АВD — прямоугольные. Тогда, используя теорему Пифагора, можно записатьРис. 4AB2=AC2−CB2=AD2−DB2,илиL2−l2=υ20t2−(at22−l)2.Отсюда выразим квадрат начальной скорости:υ20=L2t2+a2t24−al.Для того чтобы скорость υ0 была минимальной, необходимо, чтобы сумма L2t2+a2t24 принимала минимальное значение. Используем неравенство Коши:L2t2+a2t24≥2L2t2a2t24−−−−−−√=Laи получаемυ0=a(L−l)−−−−−−−√.Обратим внимание на то, что минимальная скорость достигается при условииL2t2=a2t24, или L=at22Значит, DC = СА = L, т.е. треугольник ACD - равнобедренный, иtgα=BDAB=L−lL2−l2√.Получили, что Шарику следует бежать под углом α=arctgL−lL2−l2√ к АВ со скоростью υ0=a−(L−l)−−−−−−−−−√.