Знайти точки рівновіддалені від точок А(0,0,1), В(0,1,0),С(1,0,0) і віддалені від площини yz на відстань 2
Расстояние от плоскости yz =2 означает, что координаты точек имеют вид M(2; y; z) и N(-2; y; z) Расстояния r = MA = MB = MC равны MA = √(2²+y²+(z-1)²) MB = √(2²+(y-1)²+z²) MC = √((2-1)²+y²+z²) возведём в квадрат r² = 4+y²+(z-1)² r² = 4+(y-1)²+z² r² = 1+y²+z² приравняем первое и третье 4+y²+(z-1)² = 1+y²+z² 3 + z² - 2z +1 = z² 4 -2z = 0 2z = 4 z = 2 Теперь приравняем второе и третье 4+(y-1)²+z² = 1+y²+z² 4+y²-2y+1 = 1+y² 4-2y = 0 y = 2 и точка M(2; 2; 2) Теперь те же самые уравнения для точки N NA = √((-2)²+y²+(z-1)²) NB = √((-2)²+(y-1)²+z²) NC = √((-2-1)²+y²+z²) --- r² = 2²+y²+(z-1)² r² = 2²+(y-1)²+z² r² = 3²+y²+z² --- 2²+y²+(z-1)² = 3²+y²+z² 4 + z² -2z +1 = 9 + z² -2z = 4 z = -2 --- 2²+(y-1)²+z² = 3²+y²+z² 4 + y² -2y + 1 = 9 + y² -2y = 4 y = -2 N(-2;-2;-2)
Спасибо