Две наклонные АС и АД равны, т.к. у них одинаково расстояние от вершины А до плоскости α (расстояние равно АВ)
И треугольник АСД равнобедренный. Угол при основании СД равен
∠СДА = (180 - ∠САД)/2 = 90/2 = 45°
По теоереме синусов
АС/sin(∠СДА) = 2R
АС/sin(45°) = 2*4√2
AC * √2 = 8√2
AC = 8
---
из прямоугольного треугольника АВС с гипотенузой АС
AB = AC*sin(∠АСВ) = 8*sin(30°) = 8*1/2 = 4