Пусть X - скорость течения реки, она же - скорость движения плота.
Тогда по условию скорость катера:
- в стоячей воде - 3X,
- при движении против течения - 3Х-Х=2Х,
- при движении по течению - 3Х+Х=4Х.
- скорость сближения при движении плота и катера навстречу друг другу - Х+2Х.
Если принять расстояние между пунктами за единицу, то время движения катера от А до B составит t1=1/(Х+3Х)=1/4Х.
За это время плот пройдет расстояние S1п=Х*t1=X*(1/4Х)=1/4.
Расстояние, которое должны будут пройти плот и катер до встречи после разворота катера, соответственно, составит Sост=1-S1п=1-1/4=3/4.
Время, за которое преодолеют это расстояние катер и плот до встречи
t2=Sост/(Х+2Х)=(3/4)/(3Х)=1/4Х.
Соответственно плот за это время пройдет расстояние S2п=Х*t2=X*(1/4Х)=1/4.
Значит Общее расстояние, пройденное плотом S=S1п+S2п=1/4 +1/4 =1/2