Задание 1. В правильной пирамиде площадь основания составляет 1/3 площади полной...

0 голосов
36 просмотров

Задание 1. В правильной пирамиде площадь основания составляет 1/3 площади полной поверхности. Найти двугранный угол при основании пирамиды.
Задание 2. В правильной четырехугольной пирамиде боковое ребро образует со стороной основания угол β. Отрезок, который соединяет центр вписанной в боковую грань окружности с вершиной основания этой грани, равен 1. Определить боковую поверхность пирамиды.


Геометрия (47 баллов) | 36 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
Задание 1. В правильной пирамиде площадь основания составляет 1/3 площади полной поверхности. Найти двугранный угол при основании пирамиды. 

Примем длину стороны a основания за 1, периметр Р = 3а = 3.
Тогда площадь основания So = a
²√3/4 = √3/4.
Площадь полной поверхности S =3So = 3√3/4.
Площадь боковой поверхности равна:
 Sбок = S - So = (3√3/4) - (√3/4) = 2√3/4 = √3/2.
А так как Sбок = (1/2)РА, то апофема А равна:
 А = 2Sбок/P = 2*(√3/2)/3 = √3/3.
Высота основания h = a*cos30° = 1*(√3/2) = √3/2.
Проекция апофемы на основание в правильной треугольной пирамиде равна (1/3)h = √3/6.
Двугранный угол между боковой гранью и основанием равен плоскому углу α между апофемой и её проекцией на основание.
cos α = ((1/3)h/A) = (√3/6)/(√3/3) = 3/6 = 1/2.
α = arc cos(1/2) = 60°.

Задание 2. В правильной четырехугольной пирамиде боковое ребро образует со стороной основания угол β. Отрезок, который соединяет центр вписанной в боковую грань окружности с вершиной основания этой грани, равен 1. Определить боковую поверхность пирамиды.

Заданный отрезок длиной 1 - это часть биссектрисы угла боковой грани при основании от вершины до пересечения с апофемой.
Сторона а основания равна:
а = 2*1*cos(
β/2) = 2cos(β/2). Периметр основания Р = 4а = 8cos(β/2).
Апофема А равна:
А = (а/2)*tg
β = cos(β/2)*tgβ.
Тогда Sбок = (1/2)РА = (1/2)*(8cos(β/2))*(cos(β/2)*tgβ) = 4cos²(β/2)*tgβ
(можно заменить функцию половинного угла на целого, но формула получится более громоздкая).
(309k баллов)