Помогите пожалуйста, нужно подробное решение
Найти сумму корней уравнения Решение ОДЗ уравнениия 3x² -1 ≥ 0 ⇔ x² ≥1/3. Следовательно х∈(-∞;-1/√3)U(1/√3;+∞) Произведем замену переменных x = t - 1 Тогда: 3x²-1 =3(t - 1)² - 1 = 3(t² - 2t + 1) - 1 = 3t² - 6t + 2 x² - x + 1 = (t - 1)² - (t - 1) + 1 = t² - 2t + 1 - t + 1 + 1 = t² - 3t + 3 3x² + 2x + 1 = 3(t - 1)² + 2(t - 1) + 1 = 3t² - 6t + 3 + 2t - 2 + 1 = 3t² - 4t + 2 x² + 2x + 4 = (t - 1)² + 2(t - 1) + 4 = t² - 2t + 1 + 2t - 2 + 4 = t² + 3 Поучили следующее уравнение Запишем уравнение в следующем виде Очевидно, что при t>0: 3t² + 2 - 6t < 3t² + 2 - 4t -2t < 0 t > 0 t² + 3 - 3t < t² + 3<br> -3t < 0 t > 0 при t<0: 3t² + 2 - 6t > 3t² + 2 - 4t -2t > 0 t < 0 t² + 3 - 3t > t² + 3 -3t > 0 t < 0 Следовательно при t>0 и при t<0 уравнение решений не имеет.<br>И только при t =0 уравнение имеет решение так как Найдем значение переменной х х = t - 1 = 0 - 1 =-1 Ответ: -1