Пусть ребра единичные.
найдем высоту пирамиды .
два противоположных боковых ребра по единице - диагональ основания √2 - высота √2/2
Пусть А-начало координат .
Ось X - AB
Ось Y - AD
Ось Z - вверх в сторону S
Вектора
SK (0;-0.5;-√2/2) длина √(1/4+2/4)=√3/2
AC (1;1;0) длина √2
косинус искомого угла
| SK*AC | / | SK | / | AC | = 0.5 / (√2/2) / (√2)= 1/2
угол 60 градусов.